再论“空间句法”
摘要: 本文以解释构形概念为主线,扼要介绍和评析了空间句法的理论、方法和实践及其最新进展。重点分析了空间句法的各种形态变量,以及在此基础上形成的凸状、轴线、视区、交叠凸状、所有线、可见图解分析、表面分割和端点分割、测角修正等实用的空间分析技术及其原理,指出空间句法是在结合拓扑计算方法和主要基于可见性的空间知觉分析基础之上,对空间构形进行量化解析的方法。本文亦简要解释了空间句法在实际应用中形成的“自然运动”、“意念社区”等概念。关键词: 空间句法 构形 可见性分析 拓扑 计算机辅助空间分析
国内建筑界对空间句法的了解,多数仅限于由赵冰翻译的《空间句法——城市新见》一文.发表于1985年第一期《新建筑》上的这篇文章,简要介绍了早期的空间句法方法在城市空间形态研究方面的应用,但未全面介绍其方法背景、原理和其他应用,因此,至今很多人仍颇有不解或“持保留态度”.多年来,空间句法在各方面已有长足发展,国内杂志却鲜有论及。本文试图比较清晰地介绍和评析空间句法的理论、方法、实践及其最新研究进展。
简单地说,空间句法是一种通过对包括建筑、聚落、城市甚至景观在内的人居空间结构的量化描述,来研究空间组织与人类社会之间关系的理论和方法(Bafna, 2003)。它是由伦敦大学巴利特学院的比尔•;希列尔(Bill Hillier)、朱利安妮•;汉森(Julienne Hanson)等人发明的。早在1974年,希列尔就用“句法”一词来代指某种法则,以解释基本的但又是根本不同的空间安排如何产生.到1977 年,空间句法研究则略具雏形。经过二十余年的发展,空间句法理论已经深入到对建筑和城市的空间本质与功能的细致研究之中,并得到不断完善;由此开发出的一整套计算机软件,可用于建成环境各个尺度的空间分析;而且在建筑和城市设计中进行了广泛的应用。如今,空间句法的研究和应用已经在世界范围内普遍展开。 1997年,首届世界性的空间句法研讨会在伦敦举行;其后于1999年和2001年又在巴西利亚和亚特兰大举行了第二和第三届。2003年6月,在伦敦刚刚举行的第四届研讨会上,来自世界数十个国家和地区的82篇论文,从不同角度对空间句法进行了广泛深入的探讨。另外,日趋成熟的空间句法分析技术,已经成功应用于商业咨询。理查德;罗杰斯、诺曼;福斯特、泰瑞;法雷尔等知名事务所,在众多建筑和城市设计项目中雇请空间句法咨询公司进行空间分析,为其设计提供了有力的引导和支持。
由于篇幅所限,本文以解释构形概念为主线,重点从空间知觉的角度简析空间句法的方法原理,使读者能真正理解并实际运用它;而对于空间句法的理论概念和具体应用成果仅作扼要介绍。
1. 构形与建筑学
1.1 构形的含义
构形(configuration),从字面上看,是指“轮廓由其各部分或元素配置决定的外形”(据美国传统辞典)。希列尔将构形定义为“一组相互独立的关系系统,且其中每一关系都决定于其他所有的关系。”(Hillier, 1996, 35)所以,改变系统中一个元素的构形,就会改变很多其他元素,很可能是其他所有元素的构形属性;继而使整个系统的构形发生变化。
构形是一种普遍存在的现象。很多有形的物质形态,甚至是语言等非物质形态,当我们将其作为关系系统看待时,都会发现其构形的存在。
1.2 房屋的构形本性
在《空间是部机器》一书中,希列尔从建筑学在理论层面的深刻思考中,揭示了空间的构形本质。作者不同意“房屋最初是个庇护所”的观点,认为这是用简单的功能解释掩盖了内在的本质。作者指出,房屋是对建造前的现存环境在实体和空间上的改变。这种改变对人来说是复杂的,其中只有一部分是“功能性”的影响,即遮蔽和保护,更重要的还有逻辑和类别上的。它蕴涵着本质上是逻辑的“关系”的概念,即出现了“内部”和“外部”,其间的关系是彼此独立,但又相互暗示、补充和不可分割的。
同时,这种内、外界限在逻辑上的区别具有复杂的社会学意义。它不仅产生了物质上的分离,而且在社会上产生了分离的领域——被保护起来的空间——只认同某个人或某个群体,他们在此拥有特定的权利。是这种关系综合体的逻辑性,导致了房屋在社会上的差别,并因此房屋第一次开始反映和干预到社会关系。房屋正是通过其形态和空间在此过程中的这种本质联系,才由物质对象转化为社会和文化对象。希列尔指出,房屋通过两种方式产生居于其物质功能之上的重要社会意义:
(1)将空间完善为某些可操作的社会模式,以产生和抑制一些社会认可的——既而是规范性的——碰面和回避的模式;
(2)将实体形态完善为表达文化和艺术认同的模式。即使最初级的房屋也体现为这两种二元性,即实体形态与空间形态,和物质功能与社会文化功能。当实体和空间完善为某种模式,即我们所说的构形时,这样才产生社会文化功能。
“空间的关系配置源于头脑的排序能力和空间秩序之间的某处,社会的关系正是内在地通过这种方式,才在空间中得以领会。这样,如在形体中一样,我们在空间中也发现了房屋的物质本性和更加完善的构形本性之间的分离,虽然前者已显示初步的关系特征,但与后者相联系的是精神和社会体验,而不是物质和个人体验。从简单空间到空间构形的过程,同时也是外显通向理解的过程”(Hillier, 1996, 26)。总之,构形是房屋与生俱来的属性,也是连接物质属性与社会文化属性的中介。
1.3 建筑学理论应基于对构形的表述
人们无须有意识的思考就可以认知构形,但却不知如何描述它。这种构形的无意识性不仅局限于建筑学,“似乎贯穿于所有使用法则系统,并以社会的方式来运转的领域”。例如,语言的概念可以区分为两种:一种是我们思考着的字词及其表达的对象,另一种是我们思考所运用的句法和语义规则,后者来支配如何让字词的配置产生意义。我们思考着的字词就像事物本身,是有意识层面的。而我们思考所运用的隐藏结构,则具有构形法则的本性,它告诉我们事物是如何组织起来的,是下意识层面的。(Hillier, 1996, 40)
传统村落通过构形来传递文化和社会本性,就是通过无意识的方式来完成的。这是文化的自为,是对文化的空间和实体形态的复制,而并未有意识地理解建成环境的文化关系。“只有当形体和空间的构形不是当作无意识的规则来遵循,而是提升到有意识思考的层面,并借此成为创造性关注对象的一部分时,建筑学才开始建立。” (Hillier, 1996, 45)
希列尔指出,建筑学理论存在的最普遍的错误倾向就是“重规范,而轻分析”。很明显,在寻求指导设计之前,我们应该首先理解建筑。因此希列尔提出,建筑学理论要寻求创造一种技术,以帮助系统论述本难以言说的空间形态的构形。这种对构形的表述是建筑学理论的前提和基础,也是空间句法的重要贡献和在操作层面的核心内容。
2. 基本构形的描述与分析
2.1 构形的直观描述——关系图解(justified graph)
让我们来看一个解释空间句法的经典案例。左数第一列的三个建筑平面,其形状几乎一样,只是内部隔墙开门略有不同。但在接下来的分析中,会发现其空间构形有着巨大差异。第二列的三个平面,是将第一列平面进行图底反转,以强调我们的研究对象——空间。再用圆圈(即节点)代表矩形空间,用短线来表示它们之间的连接关系,就可转换为第三列的三个结构图解。从中可以清楚地看到a是个很深的“链形”结构,而b则是相对较浅的“树形”结构,而c是套接起来的两个“环形”结构。这种用节点与连线来描述结构关系的图解被称为关系图解。关系图解为空间构形提供了有效的描述方法,同时也是对构形进行量化的重要途径。关系图解是一种拓扑结构图解,它不强调欧氏几何中的距离、形状等概念,而重在表达由节点间的连接关系组成的结构系统。
2.2 构形的定量描述
在关系图解基础之上,空间句法发展了一系列基于拓扑计算的形态变量,来定量地描述构形。其中最基本的变量有如下五个:
(1)连接值(connectivity value)。与某节点邻接的节点个数即为该节点的连接值。在实际空间系统中,某个空间的连接值越高,则表示其空间渗透性越好。
(2)控制值(control value)。假设系统中每个节点的权重都是1,则某节点a从相邻节点b分配到的权重为,那么与a直接相连的节点的连接值倒数之和,就是a从相邻各节点分配到的权重,这表示节点之间相互控制的程度,因此称为a节点的控制值。
(3)深度值(depth value)。规定两个邻接节点间的距离为一步,则从一节点到另一节点的最短路程(即最少步数)就是这两个节点间的深度。系统中某个节点到其他所有节点的最短路程(即最少步数)的平均值,即称为该节点的平均深度值。用关系图解来辅助计算,则更加清晰,公式可表示为.例如,入口空间的平均深度值MD=(1×1+2×2+3×2+4×3+5×1)/(9-1)=3.5.系统的总深度值则是各节点的平均深度值之和。
很明显,深度值表达的是节点在拓扑意义上的可达性,即节点在空间系统中的便捷度。这一概念最初源自应用图论的研究成果.深度是空间句法中最重要的概念之一,它蕴涵着重要的社会和文化意义。人们常说的“酒好不怕巷子深”、“庭院深深”,这其中的“深”就有局部深度的含义,它主要表达空间转换的次数,而不是指实际距离。
上面所说的平均深度值和总深度值都是整体深度值,是对整个系统的描述;与此概念相对的是局部深度值。假设从某节点出发,要走k步才能覆盖整个系统,那么其在n步内走过的路程,即为局部深度值(这里n<k)。
(4) 集成度(integration value)。用上述方法定义的“深度值”在很大程度上决定于系统中节点的数目。因此,为剔除系统中元素数量的干扰,P.Steadman改进了计算方法,用相对不对称值(relative asymmetry)来将其标准化,公式是RA=2(MD-1)/(n-2)。 [其中的n为节点总数].为与实际意义正相关,将RA取倒数,称为集成度。后来又用RRA来进一步标准化集成度,以便比较不同大小的空间系统。RRA=RA/Dn. 对应于整体深度值和局部深度值,也同样存在着整体集成度和局部集成度。整体集成度表示节点与整个系统内所有节点联系的紧密程度;而局部集成度是表示,某节点与其附近几步内的节点间联系的紧密程度,通常计算三步或十步范围,称为“半径-3集成度”或“半径-10集成度”。
(5)可理解度(intelligibility)。上述连接值、控制值和局部集成度,是描述局部层次上的结构特征的;而整体集成度是描述整体层次上的结构特征的。可理解度用来描述这种局部变量与整体变量之间的相关度。希列尔指出,无论对城市还是建筑空间,我们都很难原地立刻体验它,必须通过在系统中运动地观察,才能一部分一部分地逐渐建立起整个空间系统的图景。可理解度就是衡量从一个空间所看到的局部空间结构,是否有助于建立起整个空间系统的图景,即能否作为其看不到的整个空间结构的引导。所以,如果空间系统中连接值高的空间,其集成度也高,那么,这就是一个可理解性好的空间系统。
以上这些变量定量地描述了节点之间,以及节点与整个结构之间的关系,或者定量描述了整个结构的特征。此外,在具体的构形分析中,为说明特定问题,还会根据上述五个基本变量导出很多参数,在此就不一一列出了。
2.3 几何格网的构形分析
如果将平面图形用规则的细小格网来近似表示,其中的每个小格子代表一个节点,格子间的相邻关系表示连接,由此便可计算出上述各种变量。例如,用格子表示的仿西方古典建筑的立面构形,格子填充色的深浅代表集成度的分布,深色格子代表较高的集成度。可以看出集成度最高之处位于中央上部,并沿着中柱延伸至底平面。把这个立面识别为几个基本几何形的组合,然后分别计算每部分的集成度,并由此填充深浅颜色。在这里,又可发现其集成度分布呈水平状态。希列尔指出,这种由分析所揭示的中央集中的垂直结构和线形的水平结构,可能是跨文化的各种古典建筑立面中,所创造的最普遍的形式主题(Hillier, 1996, 123)。希列尔用这种细小格网的构形分析方法,对各种平面图形进行了解释;还定量地重新定义了对称、均衡等几何现象。
若将规则格网稍加变化,阻隔某些格子之间的联系,还可发现几何构形的一些普遍规律,希列尔将这一过程称为“障碍操作”试验。例如,各网格深度值的计算结果,可以发现四大原理(Hillier, 1996, 305):(1)中心性原理。阻隔条放在中间比放在边缘,会导致更大的总深度值。(2)延长性原理。分隔条越长,总深度值越大。(3)邻接性原理。相互邻接的分隔条,会比互不邻接的分隔条,导致更大的总深度值。(4)直线性原理。直线相接的分隔条,会比盘绕的分隔条,导致更大的总深度值。这四大原理是局部改变影响整个构形的普遍规律。填塞或删除某些格子也遵从这四大原理,只是删除格子的规律与其总深度值的变化方向相反。这些规律对室内空间安排和开放空间配置等实际设计问题,有一定的启发和指导意义。
3. 实际空间的构形分析方法
构形分析首先要把空间系统转化为节点及其相互连接组成的关系图解,其中,每个节点代表空间系统的一个组成单元。这种将整个空间系统划分为各组成单元的过程称为空间分割。前面将平面图形分割为细小格网进行构形分析,完全是理想状态的,是为了揭示构形的一些客观规律;若将真实的复杂空间系统,划分为大小相等的格网来分析,则没有实际意义.
人们主要是以运动的方式,通过视觉体验才建立起实际空间的构形。基于这种认识,空间句法通过基于可见性的空间知觉分析,形成了多种空间分割方法,现概括为如下三类。
3.1 三种基本的空间分割方法
从认知角度看,空间可分为大尺度空间与小尺度空间。大尺度空间就是超过个体的定点感知能力,从一个固定点不能完全感知的空间;而小尺度空间则是可从一点感知的。人们通过对很多小尺度空间的感知,才逐渐形成对大尺度空间的理解(江斌, 2002, 41)。复杂的城市和建筑空间可看成大尺度空间,在空间句法中,将其分割为小尺度空间最基本的三种方法,就是凸状、轴线和视区。
3.1.1 凸状
凸状本是个数学概念。连接空间中任意两点的直线,皆处于该空间中,则该空间就是凸状。因此,凸状是“不包含凹的部分”的小尺度空间。从认知意义来说,凸状空间中的每个点都能看到整个凸状空间。这表明,处于同一凸状空间的所有人都能彼此互视,从而达到充分而稳定的了解和互动,所以凸状空间还表达了人们相对静止地使用和聚集状态。空间句法规定,用最少且最大的凸状覆盖整个空间系统,然后把每个凸状当作一个节点,根据它们之间的连接关系,便可转化为前述关系图解,并计算和分析各种空间句法变量,然后用深浅不同的颜色表示每个凸状空间句法变量的高低。
3.1.2 轴线
轴线即从空间中一点所能看到的最远距离,每条轴线代表沿一维方向展开的一个小尺度空间。同时,沿轴线方向行进也是最经济、便捷的运动方式,所以轴线与凸状一样,也具有视觉感知和运动状态的双重含义。空间句法规定,用最少且最长的轴线覆盖整个空间系统,并且穿越每个凸状空间,然后把每条轴线当作一个节点,根据它们之间的交接关系,便可转化为前述关系图解,并计算和分析各种空间句法变量,最后用深浅不同的颜色表示每条轴线句法变量的高低。
3.1.3视区
简单地说,视区就是从空间中某点所能看到的区域。视区本是个三维的概念,而通常所说的视区是二维的,是指视点在其所处水平面上的可见范围.
定性地视区分析可探讨不同空间在整个空间结构中的控制力和影响力,并借此挖掘其社会文化意义。例如有人对城市中不同广场,或者建筑中不同房间的“凸状视区”进行比较研究;还有用“钻石形空间视区”分析来研究人们日常活动区域内的可见范围;用“立面视区”来分析重要建筑与城市空间的结合关系。
用视区方法进行空间分割,就是首先在空间系统中选择一定数量的特征点,一般选取道路交叉口和转折点的中心作为特征点,因为这些地方在空间转换上具有战略性地位;接着求出每个点的视区,然后根据这些视区之间的交接关系,转化为关系图解,并计算每个视区的句法变量。最后的图示可用深浅不同的颜色来表示每个点句法变量的大小,并用等值线描绘出这些点之间的过渡区域。
3.1.4评析
轴线和凸状是空间句法最早采用的两种方法。多年的实践证明它们是行之有效的,空间句法在建筑与城市研究方面的大量成果,多得益于这两种方法。但它们也有不足之处:(1)其绘制过程是个相当复杂的工作,尤其对于像城市这样规模较大的空间系统。虽然有很多相关的空间句法软件,但这些软件,例如最常用的“Axman”,只能计算变量和图示成果,轴线仍需在CAD里人工绘制。Batty和Rana(2002)曾试图通过视区的最长直径来模拟轴线,但也不能准确实现其自动识别和生成。(2)最具争议的是,空间句法关于凸状要“最少且最大”,轴线要“最少且最长”的定义。究竟怎样画出的轴线和凸状,才能证明达到了上述要求呢?至今没有公认的答案.这样,不同人对同一空间系统难免有不同的解释,绘出的轴线和凸状图也就很容易存在差异,因此其可靠性和可比较性就很难保证。因此,空间句法的科学性受到了质疑。
上述视区分割中,特征点的选择较为主观,对于弧形道路或者较为复杂的建筑空间系统,也很难确保惟一性。所以,有学者提出用能够覆盖整个空间系统的最少视区来进行空间分割,这就是在空间系统中寻找能看到每个角落的最少观察点。这其实类似于数学上的“美术馆问题”。Batty(2001)曾借鉴和改进该数学问题的相关算法,在泰特美术馆的空间分析中进行了尝试。
3.2 三种穷尽式的空间分割方法
为了保证空间分割的代表性和惟一性,上面讨论的凸状、轴线和视区分割都强调“最少”;与此思路相反,1990 年代以来,在这三种最基本的空间分割方法基础上,逐步发展的交叠凸状、所有线和可见图解分析方法,都强调“最多”,即穷尽某一定义下所有不重复的子空间,而不管这些子空间相互交叉的复杂程度。这样虽导致运算量很大,但定义明确,所以在计算机的支持下,可自动完成分析。
3.2.1穷尽凸状——交叠凸状空间分析
根据该方法,首先画出由实体边界限定的所有最大的凸状空间,即每一凸状都要顶到实体或边界,这些凸状空间不可避免地相互交叠。两个凸状空间交叠的子区域也一定是凸状空间,而且该子区域可同时看到这两个凸状空间。这样,就可以得到数目一定的交叠凸状小空间,它们具有较大的可见范围,而未交叠的区域则可见范围相对较小(Hillier, 1996, 125)。然后,便可根据所有这些凸状空间的相互交接关系,计算上述各种句法变量。
交叠凸状分割与上面讨论的凸状分割的区别在于:(1)交叠凸状空间的每条边都一定与实体边界共线,而凸状分析只要求至少有一条边与实体边界共线;(2)凸状分析方法中,各凸状空间只可相邻,不允许交叠。所以,交叠凸状分割方法更强调实体的界定作用,而没有对各凸状空间之间的关系作出太多限制。这是其定义明确的关键所在。某变形网格平面及其凸状和交叠凸状空间分析比较。可以看出,二者的分析结果大致吻合,都显示出右部的广场及其相连的道路具有最高的集成度。
该方法分析过程繁琐,手工操作很难保证准确无误,多由计算机自动完成,但是若实体边界过多、较为复杂或含有弧线,则运算量相当大,常出错,生成的交叠凸状也过于杂乱。
3.2.2穷尽轴线——所有线分析
此方法认为空间在其初始状态下,可概念化为无限密集的线的矩阵,它暗含各种结构的可能性。若在此空间中置入物体就意味着,原有的某些运动和可见的线被打断了(Hillier, 1996, 345~347)。这时,来注意那些与该物体尽可能接近,但又未受其影响的线,也就是仅在一个顶点上与该物体相切的线。之所以注意这些线,是因为它们处在,由于物体的介入而导致的被打断的线与未被打断的线的战略交界上。这样当有另一物体置入该空间时,找出另一物体的相切顶点,则两点确定一条直线,我们就能绘出数量一定的战略线。这些战略线的集合就是“所有线”。
因此,“所有线”被定义为,与一个物体的一个顶点和另一物体的一个顶点都相切,直到碰到其他物体或空间的边界的线的集合,(另外,在具体分析时,原有空间边界的顶点亦常考虑在"所有线“连接的范围内,因为它标示了边界与物体的关系)。同样,根据这些"所有线”之间的交接关系,亦可将其转化为前述关系图解,并计算和分析各种空间句法变量。再用由红到蓝的线,代表集成度由高到低的变化。
对上面提到的变形网格平面进行轴线和“所有线”分析的比较。可以看出,二者的分析结果大致相同。而且,每条轴线在所有线中都能找到。但是,在上图中,横贯东西的那条集成度最高的轴线所代表的空间,能明显看出,靠近广场的地方要比左端的集成度高,即存在从右向左的退晕现象。这是该轴线在左端被部分集成度较低的短线交叉覆盖的结果。这样看来,“所有线”分析不但通过其中的长线再现了整体结构,这相当于轴线图的作用;而且通过其中的短线,反映出局部结构(Hillier, 1996, 348)。因此,“所有线”分析与轴线分析相比,更加精确和细致。
但是,“所有线”分析往往线条密而多,彼此交叉覆盖,不像轴线分析那样,可清晰辨别出直观地代表运动的几条主要直线。即“所有线”的冗余度太大,经济性不够(Peponis, 1998)。另外,其取样与交叠凸状空间分析类似,完全取决于所处理的多边形的复杂性,如果多边形的顶点过多,或存在曲线(软件将把曲线识别为由许多顶点构成),其计算将相当繁琐,甚至出错。这些都使“所有线”分析的实际应用受到了限制。
3.2.3 穷尽视区——从视区集成到可见图解
穷尽视区的方法通过在空间中整齐排布密集的点,来解决前述特征点取样的代表性和惟一性问题。其分析步骤是:首先在要分析的空间平面上以一定密度建立规则的点阵,然后求出每个点的视区,再根据这些视区之间的交接关系,算出每个点的句法变量。这种方法当时被称为“视区集成分析”(Turner, 1999)。
如果从点之间的可见性关系来看,在视区集成分析中,视区相互交叠的两个观察点不一定能够彼此互视,即视区集成分析是把相互可见的点(即一次可见联系),以及视区交叠但互不可见的点(即二次可见联系),均算作直接的连接关系。后来,伦敦大学学院的研究人员仅把相互可见的点算做直接连接,即以一次可见联系来生成可见图解,然后对此图解进行集成度的计算,便可得到每个点的句法变量。
点阵中任意相互可见的两点,可理解为构成了一个小的凸状空间,可见图解分析可看作根据这些凸状空间的交接关系来计算句法变量,所以这种方法亦可看作凸状方法的延伸。可见图解分析与前述各种分析方法的最大差异,就是要先建立规则的点阵。所以,这种方法是从所有点之间的可见性关系中,引出的空间拓扑结构计算。
泰特美术馆的轴线、凸状和可见图解分析的比较,可看出可见图解的优点主要体现在:(1)对于复杂和开放的建筑平面,很难确定惟一的轴线和凸状画法,而可见图解分析则不会受到这种限制,只需在空间中均匀地排布点;(2)对于相同的平面,只要保持一定的点阵密度,可见图解分析的结果会比轴线、凸状分析更加细致,原来仅用一条轴线或一个凸状表示的空间,可见图解可详细揭示其内部的差异。可见图解分析的最大缺点是计算相当耗时,但随着计算机运算能力的不断增强,只要适当控制取样点的密度,可见图解分析完全可以胜任规模较大的建筑和城市空间分析。
3.3 以实体的形定义的空间分割方法
这类方法中,以表面分割(surface partition)和端点分割(endpoint partition)最为著名,它是在1995-1999年,由当时供职于佐治亚理工学院(GIT)的派普内斯(John Peponis)和瓦因曼(Jean Wineman)等学者发展的一套新的空间构形分析方法。
他们认为,运动是可让我们把复杂空间结构中的不同视点相互联系,并通过直接体验与抽象推理的结合,找回空间描述的操作基础。而人们在运动中感知到的空间信息一般是不连续的,于是人们会根据这种不连续性而把空间系统自然地划分为视觉感知的基本单元。空间分割就是找出这些空间单元的交界之处。派普内斯认为空间信息的不连续是由空间边界的不连续造成的,如墙角、墙的转折点、自由墙体的尽端等。他用这些不连续点将实体边界区分为不同的边,然后,用“能否看到相同的边”来定义空间信息的基本单元,从而廓清建筑实体的形式与空间构形之间的关系。
表面分割就是通过延伸优角(大于180° 的角)的两边来对空间进行分割,自由墙体的端点可看成360°的优角,所以也要延长,所得分割线是被延伸的“墙表面”可见与不可见的临界之处,所分割成的子空间称为s空间。端点分割就是除了绘出表面分割线之外,再绘出所有可延伸的优角连接线的延长线,其意义是所有“边”的可见与不可见的临界之处,即跨过这条线则原来可见的一条边就看不到了,或看到了一条原来看不到的边,这样分割成的子空间称为e空间。每个e空间都具有“获取信息稳定的”特点,即同一e空间中各点都只能看到相同的边,这就是空间体验的基本单元。
经端点分割后形成的各单元,从局部获取的视觉信息是不相等的。蓝颜色e空间的视觉信息最少,只能看到4条边,而黄颜色e空间的视觉信息最多,可看到8条边。
这些子空间的句法变量计算与传统的凸状算法略有不同。简单地根据e 空间之间的连接关系计算出的集成度,难以表达实际意义。派普内斯用可见性来定义空间的连接:如果两个e空间中的各点都能彼此互视,即若存在一个包容这两个 e空间,且不被实体打断的凸状空间,则认为这两个e空间有连接关系。用这种方法判断所有e空间两两之间的关系,继而生成关系图解,然后便可计算各种句法变量。某个e空间的深度值,其意义就是判断从该e空间出发,在视觉上需要多少步才能看遍整个空间系统。
可以看出,这种表面和端点分割方法比交叠凸状的划分更细,凸状的交叠区域一定是某几个s 空间的并集。端点分割线与前述所有线也有相通之处,但其意义不同,所有线是为了分析视线或运动线的关系,而这种方法则是为了研究由这些分割线划分出的空间。两者在形式上也有差别。左边蓝线是绘出的一条“所有线”,它贯穿整个空间,止于边界;右边红线是在相同位置绘出的端点分割线,它只保留了下半段,因为这半段线才具有“边”的临界可见性质:即在这半段线左边,a和b两条边线皆可见,而在其右边则只能看到b,却看不到a.
此外,以实体的形定义的构形分析方法还包括核心空间分析、边的视区集成和边界的可见图解分析等,暂不展开。
3.4 小结和补充
3.4.1 小结
空间与实体是相互依存的矛盾统一体。要讨论空间构形就不能撇开对实体的研究。本章讨论的三类空间分割方法都是从可见性关系在空间与实体的相互制约之间,寻找恰当的平衡点和切入点。开头讨论的三种基本的空间分割方法,主要着眼于由实体界定的空间大致结构组成,虽然不能辨别实体边界的微小变动对空间的影响,但更符合人们头脑中简单、明确的空间构形;三种穷尽式的空间分割方法,更加强调由实体边界决定的空间分割的唯一性,也就是说这三种空间分割方法对实体形式的依赖性和敏感度都较强,但分析过程往往比较繁琐;而最后讨论的表面分割和端点分割方法,则更加直接地强调实体边界的转折点、角以及尽端等形式特征对空间构形的影响,定义明确,操作客观,但有时会纠缠于实体几何形式的琐碎干扰,而偏离对空间整体构形的专注。
在实际分析中,往往根据不同的研究对象和目的选择合适的分析方法。例如,对于街巷布局或大范围城市路网的研究一般采用轴线方法;对于房间界定较为明确的建筑空间,常用凸状方法;对于自由开放的建筑平面多以可见图解来分析……有时,对同一平面还会用多种方法来分析,以充分发掘其潜在的多重构形。
本章提到了多种与空间分割相关的线。如果把视区也看作通过观察点的无限密集的线的集合,那么,可以看出在对同一空间系统进行分析时,这些线之间的集合关系.
3.4.2 补充:测角修正
测角修正就是根据人们体验空间的特点,对前述轴线、所有线和可见图解分析等方法进行改进。很多研究表明,转弯角度是影响人们认知空间的重要因素。接近90° 的道路转弯给人的印象很明显,而小于15°的道路转弯通常察觉不到。但是在轴线分析中,即使以很小角度相交的两条轴线,都会被当作像90°相交的两条轴线一样来计算,即都认为产生了一次空间转换。这就会存在一定误差。因此,测角修正主张,在计算前述深度值等形态变量时,根据轴线交接的角度,要乘以适当的加权系数。90°相交的两条轴线,其系数为1,而0°相交的两条轴线,其系数为0,介于0°和90°之间的则为0~1之间的分数。因此,这种计算深度值的方法被称为“分数深度”。a比b的加权系数小,就暗示a中道路转弯不如b给人的印象显著,即a的深度小于b.同样道理,测角加权方法也能用于对可见图解分析的修正。
应指出,对于规则的方格形建筑和城市的轴线分析,是否用测角加权法修正,其计算结果差别不大,因为其轴线交角多接近90°。而对于变形网格的城市或自由、开放平面的建筑空间分析,则显示出测角加权修正的必要性。
另外,这种“分数深度”的计算方法,可成功地将城市GIS 数据中的道路中心线,转化为轴线来进行空间句法计算 (Dalton,2003)。多数城市GIS对道路的表达,是基于连接道路交叉点之间的道路中心线。这样,通常在空间句法中用一条轴线来代表的通直道路,在GIS中却表达为多条首尾相接的线段。如果把这些线段作为轴线,用传统的空间句法算法来分析,会发现集成核一般位于城市平面的几何中心,明显与实际不符。但是若采用分数深度的算法,那么沿一条直线排列的线段,会乘以0的加权系数,即会当作一整条线段来计算,这样就与传统的轴线计算结果取得了一致。这种方法在城市的层次上,基本解决了传统轴线生成方法的人工化和不统一性等问题。而且这种方法更为精确,不仅在于道路的微小转折都会被加权处理,而且传统上表达为一条轴线的道路,被交叉口分成不同段来表达,显示出各段在交通、人流、土地使用等方面的不同特征。由此方法编写的“TIGER”软件,可以方便地对整个城市进行轴线分析,或对多个城市进行比较研究。
从上面的分析中可以看出,基于可见性的空间知觉分析的介入,才把第二部分的基本拓扑算法,应用到实际空间分析之中。正如汉森所说,(空间句法的)“每种方法都与人们体验和使用空间的方式相关。”这些方法不但明晰了空间的视觉感知方式,而且增强了空间句法的实用性,在对建筑和城市的应用研究中取得了大量成果。
4. 构形方法的应用研究
空间句法从对空间本身的研究出发,解释了大量建筑和城市现象,并引出了众多颇有见地的新概念。本文仅选取其中几个方面简述如下。
4.1 “自然运动”
相关研究通过对建筑和城市空间的大量案例进行构形分析,然后与实际观察到的活动和功能作比较,在剔除了各种干扰因素后,发现空间构形与空间中的活动有着明显的对应关系。即如果没有特别的吸引目标,且排除了路况等因素的干扰,则在大多数案例中,集成度和可理解度较高的地方,往往具有较多的人流和车流。因此,希列尔认为,空间的构形决定了运动密度的不同分布。“自然运动”就是由空间构形本身决定的运动的分布。
“自然运动”是空间构形分析最基本的应用概念。运用这一概念可明确看出,实体改变通过其空间构形对运动结构的微妙影响,更好地预测人们在空间中的看似复杂和随机的聚集状态,从而有力地指导设计实践。
4.2 城市功能——“运动经济体”
这是“自然运动”的衍生概念。因为人流和车流运动与城市的用地性质(如商业零售)、建筑密度甚至盗窃等犯罪的分布都紧密相关,即这些差异都可看作运动的增殖效应。因此,城市的空间构形,通过对运动的决定作用会影响到整个城市的运行。所以,城市可看作构形作用下的“运动经济体”。
希列尔指出,空间构形最基本的相关要素就是运动。而在社会经济力量的作用下,运动在很大程度上决定着广泛的空间形态。因此,“自然运动”和“运动经济体”的概念,是通过运动来理解功能和形式之间关系的普遍原理,上至整个城市,下到单体建筑。
4.3 社会行为——“意念社区”(virtual community)
通过研究空间构形对社会行为的影响,希列尔提出了“意念社区”的概念。空间构形通过对运动模式的影响,产生了某些空间的人员聚集,即共同在场。这种人员的共同在场,是构成社区的原初要素;从心理学角度来看,又是知晓他人的最基本的方式。这种共同在场和相互知晓的模式就是“意念社区”的首要组成部分。因此,通过空间设计对运动和其他有关的空间使用产生影响,继而产生自然的共同在场的模式,这就是意念社区。(Hillier,1996,187)
意念社区不是人的简单聚集,它有着一定的结构,即不同人,包括住户和陌生人,男性和女性,成人和小孩等,其共同在场的模式和使用空间的目的皆有差别。这些差别多反映出空间构形的潜在作用。另外,关于安全感,希列尔研究发现,在城市结构中,很多住宅区的空间深度值较大,这种构形就决定了那里平时很少出现陌生人之间的碰面,住户也形成了这种心理预期,所以,当住户在家门口发现有陌生人时,就会有所警惕,甚至感到不安。而深度较浅的城市街道则不会出现这种对陌生人的恐惧感,所以很多住户认为街道比住宅区更安全。
因此,希列尔指出,空间构形与自然的共同在场之间的关系,导致了建筑对社会的影响。空间设计通过改变空间构形,而改变人们相互知晓的模式,既而对社会行为产生作用。
4.4 空间认知——可理解性
城市是自上而下的“经济因素”和自下而上的“社会文化因素”共同作用的产物,而这些作用都是由社会认知个体,在理解建成环境的基础上来完成的。上述“自然运动”和“意念社区”的概念也都基于人们对空间的认知和理解。可理解度就是从整体与局部的关系出发,对这种潜藏认知结构的一种量化描述。
对于同一空间系统,如果其中某些空间的局部变量值较高,整体变量值也较高,那么这一区域的可理解度就较高。反之,则从局部获取的信息是对人们的误导,其可理解度就较低。例伊朗城市设拉子(Shiraz)轴线分析的散点图,纵轴代表半径-6集成度,是局部变量,横轴代表整体集成度,图中白点分别代表城中各条轴线,红点代表选定区域里的每条轴线。可以看出,这些红点明显呈线形分布,并几乎贯穿整个散点图,与全城的平均回归线(白线)相交,而且斜率更大,这说明该区域的可理解度较高。对于不同空间系统,a、b 是两个形状相似的小镇平面,但不仅a中各空间的连接值和整体集成度普遍高于b,而且a中空间的连接值与整体集成度之间呈现出明显的线性关系,而b中各点较为分散,所以a的可理解度高于b.
分析显示,秩序规整的平面,如方格网或理想城,其几何形式虽清晰可辨,但可理解度可能较低,如果没有地图指引,人们在其中很容易迷路;而某些古镇的迷宫式变形网格平面却具有较高的可理解度,其中集成度高的地方往往与更多的街巷相连,即使陌生人也只需稍加走动,便能来到集成度较高,且人们活动比较集中的少数空间中,因而不会迷路。
Kim发现,在同一空间系统中,可理解度较高区域的居民对周围环境的理解范围也较大。而且,在可理解度较高的空间系统中,集成度与其中的运动状况也具有更大的相关性,即空间使用更加可以被预测。这就说明,空间构形通过人们对空间的理解,作用于人的行为和运动。
空间句法对城市意象的研究也有所启发。有学者研究发现,可意象的城市一般具有可理解性,而具有可理解性的城市未必可意象,这说明可意象性是比可理解性含义更宽的概念。但与凯文•;林奇的访谈等方法相比,空间句法提供了更客观和高效的意象研究方法,而且可进一步揭示城市意象五要素之间的关系。轴线地图也与心智地图有所联系,集成度最高的轴线往往在心智地图中有所表达。
4.5 住居文化——“空间考古学”
汉森在长达20 年的时间中,通过对跨文化的大量住宅平面的研究,以住宅的物质形态和空间构形为研究焦点,引出了很多社会学维度的讨论,诸如在特定条件下家庭的含义等问题,并取得了大量成果。其基本方法是,首先从大量住宅平面的研究中,发现其空间构形方式上的某些规律,然后看这种构形规律,是否与特定使用空间的称呼有系统的联系。在此基础上,便可推断家居空间对家庭生活和组织的各种支持方式。这种研究,被称为“空间考古学”。它通过空间构形的分析,揭示出潜藏于表面形式下的社会文化模式,即深层的“基因型”特征。(Hanson, 1998)同样,构形分析也适用于人居聚落的深层“基因型”的揭示和探讨。
对著名建筑作品的分析,也是空间句法应用研究的重要方向。例如,汉森(1998)曾与学生一起分析了博塔、迈耶、海杜克和路斯这四个著名建筑师设计的四座住宅,研究其构图与构形之间的关系。分析发现,若要像大师那样产生出形式的严格性与功能的舒适性之间的实际联系,就必须同时兼顾形式的内在法则和空间的社会逻辑。派普内斯等学者也常通过对帕拉第奥、密斯、海杜克等大师作品的分析,来检验和演示其空间分析方法,并对建筑空间的意义等问题进行探讨。
此外,由于空间句法是关于构形分析的通用原理和方法,所以构形的普遍存在也预示着空间句法的普适性。现有研究成果即证实,空间句法已突破了建筑学的研究范围,在考古学、信息技术、城市和人文地理学以及人类学等领域皆有广泛应用。
5. 总结
构形理论是关于“关系结构”的普遍原理。空间构形则是空间的本质属性,是一种在共通的基础上看待城市的社会、经济和环境功能的方法(Hillier, 1998)。空间句法就是表述空间构形的工具,是量化地描述和评价空间形态的理论与方法。在操作层面上,空间句法是一种结合了可见性分析和拓扑计算的空间分析方法。
长期以来,建筑学研究中充斥着各种其他学科的语汇,从工程学到生态学,从心理学到社会学,从语言学到符号学,而空间句法则源自对空间本身的深刻探讨,它倡导了一种建立在客观分析和实证研究基础上的本体的建筑学理论;在实际操作中,空间句法不能给出可直接付诸实施的设计成果,但是它却能提供论据充分的空间关系评价,以在不同设计方案中作出优选,或理性地引导设计方向。
空间句法是一种自圆其说的综合的逻辑解释系统。单纯的数学逻辑分析或形体操作的数学运算,虽有量化分析的优势,但易流于形式操作的层面,难以触及建筑学的深层内涵;单纯文化层面的逻辑解析,又往往不够精确,或者其结论在实际操作中难以贯彻实施。空间句法则是数学逻辑分析与文化逻辑分析的有机结合,引出了兼具人文深度和可操作性的建筑学理论。建筑学需要这种理论。
当然,空间句法与通常的逻辑分析方法一样,不可避免地具有一定的方法前提和适用范围。例如,其分析出发点是空间的构形,对于实体形态的诸多问题以及空间的其他方面问题,不能直接用空间句法来解答。再如,目前空间句法的分析主要针对二维平面,但实际的空间体验应该是三维的。所以,空间句法研究是对问题的简化。
有人认为空间句法是一种计算机分析方法。但从本文前面的论述可以看出,空间句法的基本原则,都是在建筑学、社会学和空间知觉等非计算机领域内产生的。因此计算机仅是一个延伸分析思维的工具,不能单独“智能地”承担空间分析任务。只是由于空间句法在方法上的两个基础——拓扑结构描述和可见性分析——都提供了定量化的分析模型,较好地结合了数学运算,所以才给计算机发挥作用提供了天然条件。但应指出,空间句法的发展对计算机的依赖程度有越来越高的趋势,例如,前述各种穷尽式的空间分割方法,如果没有计算机是不可能应用于实践的。对计算机的依赖是方法的进步还是理念的枯竭?这是个需要冷静思考的问题。
空间句法经过二十余年的发展,已经成为在世界范围内有重要影响的建筑研究学派。本文通过对空间句法粗浅的评介,希望引起大家对空间句法的关注,更期盼着国内出现空间句法创造性的应用成果,甚至是新的空间理论和方法。
页:
[1]