马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
×
摘要:试验结果表明,软性载体淹没序批式生物膜法是行之有效的除磷工艺。在载体装填密度为30%,水力停留时间为9h(其中厌氧3h、好氧6h)、进水COD负荷为0.27~1.32 kgCOD/(m3·d)时,磷的去除率达90%以上。试验中,还就影响除磷的因素作了系统的分析。
关键词:序批式 生物膜 生物除磷
Study on the Characteristics of Phosphorus Removal in Sequencing Batch Reactor of Submerged Biofilm Process Abstract:The study result showed that the sequencing batch reactor of submerged biofilm process with fibrous carriers is effective in phosphorus removal.When the carrierpacking percentage is 30%,hydraulic retention time (HRT) is 9 h (including 3 h for anaerobic zone and 6 h for aerobic zone),and influent loading rate is 0.27~1.32 kgCOD/(m3·d),over 90% of phosphorus removal is achieved.In the test,a systematic analysis was also made for the factors affecting phosphorusremoval.
Keywords:sequencing batch reactor;biofilm process;biological phosphorus removal
1 淹没式生物膜法除磷工艺选择
1.1 淹没式生物膜法除磷的条件
在厌氧条件下,若废水中没有DO或氧化态氮,一般无聚磷能力的好氧菌及脱氮菌,不能产生ATP(三磷酸腺苷),所以这类微生物不能摄取细胞外的有机物,即不能进行主动运输。但是,另一类叫做除磷菌的细菌却能分解细胞内的聚磷酸盐同时产生ATP,并利用ATP将废水中的脂肪酸等有机物摄入细胞,以PHB(聚—β—羟基丁酸)及糖原等有机颗粒的形式储存于细胞内;同时将聚磷酸盐分解所产生的磷酸盐排出胞外,这时细胞内还会诱导产生相当量的聚磷酸盐激酶。一旦进入好氧环境,除磷菌又可利用PHB氧化分解所释放的能量来摄取废水中的磷,并把所摄取的磷合成聚磷酸盐而储存于细胞内。微生物在增殖过程中,在好氧环境下所摄取的磷比在厌氧环境下所释放的磷多,废水的生物除磷正是利用了微生物的这一过程,并作为剩余污泥排走[1].
由生物除磷机理可见,若想采用淹没式生物膜法除磷,必须解决四方面的问题:①必须满足除磷菌习性,使生物膜交替处于厌氧、好氧的状态,并逐步使除磷菌成为优势菌属,实现其增殖;②供给必要的有机碳源(由废水提供);③最后的磷排出必须是以脱落污泥的形式,这就要求除磷菌为优势菌属的生物膜生长要快,且应在好氧状态下能脱落,即需有足够的曝气强度和选择合适的生物膜载体;④污泥沉淀后应及时排出系统。
1.2 淹没式生物膜法除磷工艺选择
细菌细胞内含磷约2%(以质量计),所以传统的生物膜法最多只能去除污水中约20%的磷。对一般生物膜法来说,无论是A/O(厌氧/好氧)工艺还是A2/O(厌氧/缺氧/好氧)工艺,由于是在空间上造成A或O的状态,微生物只能持续地处于A或O的单一状态,而不能处于A/O交替的状态,因此,不具备生物除磷的条件,也就达不到生物除磷的目的[2].而序批式生物处理工艺集曝气、沉淀于一池,运转按进水、反应、沉淀、排水等几个阶段进行,污水间歇而有序地进入反应池和排出反应池。由于序批式工艺的特殊性,设计合理,可使生物膜在时间上交替处于A/O状态,从而有望实现生物除磷的目的,同时,混合液也可在时间上交替处于A/O状态,从而有望实现生物脱氮。
2 试验方法
2.1试验装置
试验装置如图1所示。
试验用反应器是有机玻璃制成,内径为15cm,反应器内有效容积为18L,其中沉淀池容积为2L.其试验进水的TP平均为10.0mg/L,COD为370.0mg/L,温度为25℃,好氧状态的DO平均为5.5mg/L.
装填密度是指生物膜与载体所占容积与整个反应器容积之比。在分别做了最大装填密度:37.5%、实用装填密度:30%以及较低装填密度:22.5%的对比试验后,确定较适宜的装填密度为30%.此时,反应器中的纤维载体的比表面积为2.66m2/L.
生物膜培养采用A/O交替运行方式历时3个月,菌种取自一般活性污泥工艺。在之后的工艺参数和影响因素的试验中,取运行条件改变后2周的水样进行测定。
2.2 原水和主要分析方法
原水用自来水加蛋白胨配制,同时还投加少量氯化铵、硫酸镁、磷酸二氢钾、氯化钙、氯化钠等,配制后水质如表1所示。
表1 原水水质表 水质指标COD(mg/L)TN(mg/L)NH+4-N(mg/L)NO-3-N(mg/L)NO-2-N(mg/L)测定值250~40030~6010~200.20.1水质指标TP(mg/L)SP(mg/L)pH碱度(mg/L)BOD5(mg/L)测定值8~107~97.3380~440180~300 注:COD为重铬酸钾法;TN为过硫酸钾—紫外分光光度法;NH+4-N为纳氏试剂光度法;NO-3-N、NO-2-N为离子色谱法;TP为过硫酸钾氯化亚锡还原光度法。
3 试验结果及分析
3.1厌氧时间段和好氧时间段的确定
为确定合适的厌氧所需时间,将厌氧时间延长到12 h,并测定了TP的变化过程(见图2)。
由图2可知,磷释放主要集中在前3 h内,之后的9 h,磷释放现象虽有,但幅度很小。聚磷菌只有充分释放磷后,才能很好地过量摄取磷,从而达到生物除磷的目的。另一方面,厌氧时间过长,将导致废水在整个反应器中的停留时间过长,很不经济。因此,依据试验曲线,确定厌氧段所需时间为3h.
为确定合适的好氧时间段,也将3h厌氧后的好氧段时间延长至17h,并测定了相应TP和各种形态氮浓度的变化曲线(见图3、4)。
由图3可见,好氧聚磷在好氧开始后2h内已近完成,但为保证硝化,笔者将好氧时间定为6h.由图4知,在6h后的NH+4-N<1mg/L,硝化基本完成,此时总氮的去除率达56.6%.
3.2 进水COD负荷
试验中,采用4种COD进水负荷考察COD、TP的变化规律(见图5、6)。
由图5可知,软性填料序批式生物膜法可承受较高的COD负荷,且在厌氧段有较高的COD吸收速率。在进水负荷为1.32kgCOD/(m3·d)(相应进水COD浓度为496.8mg/L)时,厌氧段COD吸收值为212.5mg/L;而进水负荷为1 kgCOD/(m3·d)(相应进水COD浓度为375.0mg/L)时,吸收值为203.1mg/L,这说明在进水负荷为1kgCOD/(m3·d)时,厌氧段COD吸收值已趋于极大值,并表明了不是所有的有机物都可以作为细胞的合成物质的。所以,笔者确定该工艺适宜进水COD负荷为0.27~1.32kgCOD/(m3·d)。
由图6可知,COD负荷越高,磷释放速率、磷吸收速率也就越快,出水的TP浓度也就越低。无论是低负荷[0.27kgCOD/(m3·d)]还是高负荷[1.32kg COD/(m3·d)],该工艺均可使出水TP浓度低于1mg/L.同时,以上试验也说明了磷释放所能达到的最大值与有机物的最大被吸收量有关,磷释放量随有机物吸收量的增加而增加。
3.3 基质的影响
试验比较了在相同进水COD负荷[1kgCOD/(m3·d)]时,分别以蛋白胨、葡萄糖、乙酸为基质的TP变化情况(见图7)。
由图7可见,磷的释放和吸收与基质有关。以蛋白胨为基质的放磷均速为1.37mg/(L·h),而以葡萄糖为基质的放磷均速是以蛋白胨为基质时的1.8倍,以乙酸为基质的放磷均速是以 葡萄糖为基质时的1.4倍。这是由于乙酸容易被除磷菌吸收,用以合成PHB,同时分解的聚磷酸盐也多,释放磷量大,放磷速度就快;相反,蛋白胨的分子较大,在厌氧段酵解时速度较慢,许多中间代谢产物(有机酸、醇类、醛类等)不易被除磷菌吸收用以合成PHB,因而其体 内聚磷酸盐的分解就慢,故放磷速度就慢,而葡萄糖的代谢产物却较有利于除磷菌的吸收。好氧吸磷速度的不同是由厌氧放磷速度不同引起的,厌氧段放磷速度快,磷释放量大,合成的PHB就多,那么在好氧段时由于分解PHB而合成聚磷酸盐的速度就快,所以表现出来的好氧吸磷速度也就快。
以上分析可推知,生物除磷与基质有关,实质上是与厌氧阶段易为除磷菌所吸收的有机物(COD)浓度有关。
3.4 硝态氮(NO-X)的影响
试验中实行半池出水、半池进水,使上一周期中产生的硝化液与新进原水混合,混合后NO-X浓度为13.42mg/L,COD浓度为268.46mg/L,TP浓度为4.81 mg/L.此时的厌 氧变成了缺氧,除磷菌可从NO-X中获取氧来进行缺氧吸磷。因此在缺氧段,在进行反硝化的同时,仍可继续吸磷(见图8)。
缺氧开始后3 h内吸磷均速为0.70mg/(L·h),约为好氧吸磷均速的1/6,这是由于无氧呼吸的代谢速率和产能要远远低于有氧呼吸。由此可看出,该工艺如果再加上缺氧段进行反硝化 ,控制合适的C/N比,则可望实现软性纤维载体淹没式生物膜法同步除磷脱氮。
3.5 DNP(2,4-二硝基苯酚)的影响
原水COD平均为370.0mg/L,TP平均为10.0 mg/L.做投加DNP和不投加DNP试验。DNP投加量为20.0 mg/L,试验结果如图9所示。
由图9可见,投加DNP后厌氧段的放磷量比不投加时增加了,而好氧段却没有磷的吸收。因此,DNP对厌氧放磷是有利的,而对好氧吸磷却有抑制作用。这是因为DNP是一种解偶联试剂,它对氧化呼吸链以外的磷酸化无抑制作用,只破坏利用O2或NO-X而进行的呼吸过程,从而抑制由电子传递而发生的ATP的形成。在厌氧段聚磷酸盐的分解代谢中ATP的产生是由于底物水平磷酸化,DNP对其无抑制作用,故有PO3-4的释放和PHB的合成;而在好氧段时,在有氧的条件下PHB将分解,并通过呼吸作用进行电子传递而产生能量,但由于DNP的存在,破坏了ATP的生成,所以 PO3-4不能与ADP结合产生ATP,也就产生不了聚磷酸盐,废水中的PO3-4不能被吸收,也就得不到去除。
以上试验结果说明,序批式生物膜除磷反应器中磷的去除是生物作用的结果。
4、结论
①淹没序批式生物膜法除磷工艺是行之有效的。该工艺除磷所适合的载体装填密度为30%,水力停留时间为9 h(其中厌氧3 h、好氧6 h)。在上述工艺参数下,进水COD负荷为0.27kgCOD/(m3·d)~1.32kgCOD/(m3·d)时均可使除磷率达90%以上。COD负荷越高,除磷速率越快。
②生物除磷与基质类型有关,以乙酸为基质的放磷均速是以葡萄糖为基质的1.4倍,而以葡萄糖为基质的放磷均速是以蛋白胨为基质的1.8倍。生物除磷取决于厌氧放磷量,而厌氧放磷速度取决于溶液中可快速吸收的有机物的含量。
③该工艺可同时去除56%左右的总氮,NO-X可影响磷的释放。在缺氧段仍可继续实现生物吸磷,只是吸磷速度较好氧吸磷速度明显降低,约为其1/6.因此,该工艺加缺氧段,控制合适的C/N,可望实现同步除磷脱氮。
④DNP可抑制好氧吸磷,这说明该工艺除磷是生物除磷作用的结果。
参考文献:
[1]BaoZhen Wang,Jun Li.Mechanism of Phosphorus Removal by SBR Submerged Biofilm System[J].Water Res,1998,32(9):2633-2638. |